Pure Mathematics 2

Exercise 6D

1 a Consider $\tan x=2$
$x=\tan ^{-1}(2)$
$=63.4^{\circ}$ (3 s.f.) in the first quadrant
The principal solution marked by A in the diagram is $180^{\circ}-63.4^{\circ}=116.6^{\circ}$
b The other solution between 0° and 360° is $116.6^{\circ}+180^{\circ}=296.6^{\circ}$
$x=116.6^{\circ}, 296.6^{\circ}$ when $0^{\circ} \leq x \leq 360^{\circ}$
2 a $\cos x=0.4$

$$
\begin{aligned}
x & =\cos ^{-1}(0.4) \\
& =66.4(3 \text { s.f. })
\end{aligned}
$$

b $\cos x \pm 0.4$

$\cos x=0.4$
$x=1.16$ and $x=2 \pi-1.16=5.12$
$\cos x=-0.4$
$x=1.98$ and $x=2 \pi-1.98=4.30$

3 a Using the graph of $y=\sin \theta$
$\sin \theta=-1$ when $\theta=270^{\circ}$
b $\tan \theta=\sqrt{3}$
The calculator solution is $60^{\circ}\left(\tan ^{-1} \sqrt{3}\right)$
and, as $\tan \theta$ is $+\mathrm{ve}, \theta$ lies in the first and third quadrants.
$\theta=60^{\circ}$ and $\left(180^{\circ}+60^{\circ}\right)=60^{\circ}, 240^{\circ}$

3 c $\cos \theta=\frac{1}{2}$
The calculator solution is 60° and as $\cos \theta$ is $+\mathrm{ve}, \theta$ lies in the first and fourth quadrants.
$\theta=60^{\circ}$ and $\left(360^{\circ}-60^{\circ}\right)=60^{\circ}, 300^{\circ}$
d $\sin \theta=\sin 15^{\circ}$
The acute angle satisfying the equation is $\theta=15^{\circ}$.

As $\sin \theta$ is $+\mathrm{ve}, \theta$ lies in the 1 st and 2 nd quadrants, so
$\theta=15^{\circ}$ and $\left(180^{\circ}-15^{\circ}\right)=15^{\circ}, 165^{\circ}$
e A first solution is $\cos ^{-1}\left(-\cos 40^{\circ}\right)=140^{\circ}$
A second solution of $\cos \theta=k$ is
$360^{\circ}-1$ st solution.
So second solution is 220°.
(Use the quadrant diagram as a check.)
f A first solution is $\tan ^{-1}(-1)=-45^{\circ}$
Use the quadrant diagram, noting that as \tan is -ve , solutions are in the 2 nd and 4th quadrants.
(-45° is not in the given interval.)
So solutions are 135° and 315°.
g From the graph of $y=\cos \theta$
$\cos \theta=0$ when $\theta=90^{\circ}, 270^{\circ}$

Pure Mathematics 2

$3 \mathrm{~h} \sin \theta=-0.766$
$\sin ^{-1}(-0.766)=-50^{\circ}$
$360^{\circ}-50^{\circ}=310^{\circ}$

From the diagram, the second solution is $180^{\circ}+50^{\circ}=230^{\circ}$.
$\theta=230^{\circ}, 310^{\circ}$
4 a $7 \sin \theta=5,0 \leq \theta \leq 2 \pi$
$\sin \theta=\frac{5}{7}$

$\theta=0.796$ and $\theta=\pi-0.796=2.35$
b $2 \cos \theta=-\sqrt{2}, 0 \leq \theta \leq 2 \pi$
$\cos \theta=-\frac{\sqrt{2}}{2}$

$\theta=\frac{3 \pi}{4}$ and $\theta=2 \pi-\frac{3 \pi}{4}=\frac{5 \pi}{4}$
c $3 \cos \theta=-2,0 \leq \theta \leq 2 \pi$
$\cos \theta=-\frac{2}{3}$

$\theta=2.30$ and $\theta=2 \pi-2.30=3.98$
d $4 \sin \theta=-3,0 \leq \theta \leq 2 \pi$
$\sin \theta=-\frac{3}{4}$
$\theta=(-0.848), \pi-(-0.848), 2 \pi+(-0.848)$
$\theta=3.99,5.44$

Pure Mathematics 2

5 a $\tan \theta=\frac{1}{7}$

$$
\theta=8.13^{\circ} \text { or } 188^{\circ}
$$

b $\tan \theta=\frac{15}{8}$

$$
\theta=61.9^{\circ} \text { or } 242^{\circ}
$$

5 c $\tan \theta=-\frac{11}{3}$

$$
\begin{aligned}
& \theta=-74.7^{\circ} \\
& \theta=105.3^{\circ} \text { or } 285^{\circ}
\end{aligned}
$$

d $\cos \theta=\frac{\sqrt{5}}{3}$

$$
\theta=41.8^{\circ}, 318^{\circ}
$$

6 a $\sqrt{3} \sin \theta=\cos \theta, 0 \leq \theta \leq 2 \pi$
$\frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}}$
$\tan \theta=\frac{1}{\sqrt{3}}$

$\theta=\frac{\pi}{6}$ and $\theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$
b $\sin \theta+\cos \theta=0,0 \leq \theta \leq 2 \pi$
$\sin \theta=-\cos \theta$
$\frac{\sin \theta}{\cos \theta}=-1$
$\tan \theta=-1$

$\theta=\frac{3 \pi}{4}$ and $\theta=\pi+\frac{3 \pi}{4}=\frac{7 \pi}{4}$
c $3 \sin \theta=4 \cos \theta, 0 \leq \theta \leq 2 \pi$
$\frac{\sin \theta}{\cos \theta}=\frac{4}{3}$
$\tan \theta=\frac{4}{3}$

$\theta=0.927$ and $\theta=\pi+0.927=4.07$

Pure Mathematics 2

7 a $2 \sin \theta-3 \cos \theta=0$

$$
\begin{aligned}
\tan \theta & =\frac{3}{2} \\
\theta & =56.3^{\circ} \text { or } 236^{\circ}
\end{aligned}
$$

b $\sqrt{2} \sin \theta=2 \cos \theta$

$$
\begin{aligned}
\tan \theta & =\frac{2}{\sqrt{2}}=\sqrt{2} \\
\theta & =54.7^{\circ} \text { or } 235^{\circ}
\end{aligned}
$$

c $\sqrt{5} \sin \theta+\sqrt{2} \cos \theta=0$

$$
\begin{aligned}
\sqrt{5} \tan \theta+\sqrt{2} & =0 \\
\tan \theta & =-\frac{\sqrt{2}}{\sqrt{5}} \\
\theta & =-32.3^{\circ} \theta>0 \\
\theta & =148^{\circ} \text { or } 328^{\circ}
\end{aligned}
$$

8 a Calculator solution of
$\sin x^{\circ}=-\frac{\sqrt{3}}{2}$ is $x=-60^{\circ}$
As $\sin x^{\circ}$ is $-\mathrm{ve}, x$ is in the third and fourth quadrants.

Read off all solutions in the interval $-180^{\circ} \leq x \leq 540^{\circ}$.
$x=-120^{\circ},-60^{\circ}, 240^{\circ}, 300^{\circ}$

8 b $2 \sin x=-0.3,-\pi \leq x \leq \pi$
$\sin x=-0.15$

$x=-0.151$ and $x=-\pi+0.151=-2.99$
c $\cos x^{\circ}=-0.809$
Calculator solution is 144° (3 s.f.)
As $\cos x^{\circ}$ is $-\mathrm{ve}, x$ is in the second and third quadrants.

Read off all the solutions in the interval $-180^{\circ} \leq x \leq 180^{\circ}$. $x=-144^{\circ},+144^{\circ}$

Note: Here solutions are $\cos ^{-1}(-0.809)$ and $\left(360^{\circ}-\cos ^{-1}(-0.809)\right)$.

Pure Mathematics 2

8 d $\cos x=0.84,-2 \pi \leq x \leq 0$

$x=-0.574$ and $x=-2 \pi+0.574=-5.71$
e $\tan x=-\frac{\sqrt{3}}{3}, 0 \leq x \leq 4 \pi$

$x=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}, x=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}$,
$x=3 \pi-\frac{\pi}{6}=\frac{17 \pi}{6}$ and $x=3 \pi-\frac{\pi}{6}=\frac{23 \pi}{6}$

8 f $\tan x^{\circ}=2.90$
Calculator solution is

$$
\tan ^{-1}(2.90)=71.0^{\circ}(3 \text { s.f. })
$$

(not in interval).
As $\tan x^{\circ}$ is $+v e, x$ is in the first and third quadrants.

Read off all solutions in the interval
$80^{\circ} \leq x \leq 440^{\circ}$.
$x=251^{\circ}, 431^{\circ}$
(Note: Here solutions are

$$
\left.\tan ^{-1}(2.90)+180^{\circ}, \tan ^{-1}(2.90)+360^{\circ} .\right)
$$

9 a It should be $\tan x=\frac{2}{3}$, $\operatorname{not} \frac{3}{2}$.
b Squaring both sides creates extra solutions.

9 c $\tan x=\frac{2}{3}$
$x=33.7^{\circ}$ or $x=-146.3^{\circ}$

10 a

b The graphs intersect at 2 points in the given range so there are 2 solutions.

INTERNATIONAL A LEVEL

Pure Mathematics 2

10c $2 \sin x=\cos x$
$\frac{\sin x}{\cos x}=\frac{1}{2}$
$\tan x=\frac{1}{2}$
$x=26.6^{\circ}$
$x=26.6^{\circ}+180^{\circ}=206.6^{\circ}$
$x=26.6^{\circ}$ or 206.6°
$11 \tan \theta= \pm 3$
When $\tan \theta=3, \theta=71.6^{\circ}$
or $\theta=71.6^{\circ}+180^{\circ}=251.6^{\circ}$
When $\tan \theta=-3, \theta=-71.6^{\circ}$
or $\theta=-71.6^{\circ}+180^{\circ}=108.4^{\circ}$ or
$\theta=108.4^{\circ}+180^{\circ}=288.4^{\circ}$
$\theta=71.6^{\circ}, 108.4^{\circ}, 251.6^{\circ}$ or 288.4°
12 a $4 \sin ^{2} x-3 \cos ^{2} x=2$
$4 \sin ^{2} x-3\left(1-\sin ^{2} x\right)=2$
$4 \sin ^{2} x-3+3 \sin ^{2} x=2$
$7 \sin ^{2} x=5$

12 b $4 \sin 2 x-3 \cos 2 x=2,0 \leq x \leq 2 \pi$
$7 \sin ^{2} x=5$
$\sin ^{2} x=\frac{5}{7}$
$\sin x= \pm \sqrt{\frac{5}{7}}$

$x=1.0, x=\pi-1.01=2.1$,
$x=\pi+1.01=4.1$ and $x=2 \pi-1.01=5.3$

13 a $2 \sin ^{2} x+5 \cos ^{2} x=1$ $2 \sin ^{2} x+5\left(1-\sin ^{2} x\right)=1$
$2 \sin ^{2} x+5-5 \sin ^{2} x=1$
$3 \sin ^{2} x=4$
b Using $3 \sin ^{2} x=4$
$\sin ^{2} x=\frac{4}{3}$
$\sin x>1$, therefore there are no solutions.

