Solution Bank

Exercise 6D

- 1 a Consider $\tan x = 2$ $x = \tan^{-1}(2)$ $= 63.4^{\circ}(3 \text{ s.f.})$ in the first quadrant The principal solution marked by A in the diagram is $180^{\circ} - 63.4^{\circ} = 116.6^{\circ}$
 - **b** The other solution between 0° and 360° is $116.6^{\circ} + 180^{\circ} = 296.6^{\circ}$ $x = 116.6^{\circ}, 296.6^{\circ}$ when $0^{\circ} \le x \le 360^{\circ}$
- 2 **a** $\cos x = 0.4$ $x = \cos^{-1}(0.4)$ = 66.4 (3 s.f.)

b $\cos x \pm 0.4$

 $\cos x = 0.4$ x = 1.16 and $x = 2\pi - 1.16 = 5.12$ $\cos x = -0.4$ x = 1.98 and $x = 2\pi - 1.98 = 4.30$

- 3 a Using the graph of $y = \sin \theta$ $\sin \theta = -1$ when $\theta = 270^{\circ}$
 - b $\tan \theta = \sqrt{3}$ The calculator solution is 60° ($\tan^{-1} \sqrt{3}$) and, as $\tan \theta$ is +ve, θ lies in the first and third quadrants. $\theta = 60^{\circ}$ and $(180^{\circ} + 60^{\circ}) = 60^{\circ}$, 240°

3 **c** $\cos \theta = \frac{1}{2}$ The calculator solution is 60° and as $\cos \theta$ is +ve, θ lies in the first and fourth quadrants.

 $\theta = 60^{\circ} \text{ and } (360^{\circ} - 60^{\circ}) = 60^{\circ}, 300^{\circ}$

d $\sin \theta = \sin 15^{\circ}$ The acute angle satisfying the equation is $\theta = 15^{\circ}$.

As $\sin \theta$ is +ve, θ lies in the 1st and 2nd quadrants, so

 $\theta = 15^{\circ} \text{ and } (180^{\circ} - 15^{\circ}) = 15^{\circ}, 165^{\circ}$

- e A first solution is $\cos^{-1}(-\cos 40^{\circ}) = 140^{\circ}$ A second solution of $\cos \theta = k$ is $360^{\circ} - 1$ st solution. So second solution is 220° . (Use the quadrant diagram as a check.)
- f A first solution is $\tan^{-1}(-1) = -45^{\circ}$ Use the quadrant diagram, noting that as $\tan is - ve$, solutions are in the 2nd and 4th quadrants. (-45° is not in the given interval.) So solutions are 135° and 315°.

1

g From the graph of $y = \cos \theta$ $\cos \theta = 0$ when $\theta = 90^{\circ}$, 270°

Solution Bank

3 **h**
$$\sin \theta = -0.766$$

 $\sin^{-1}(-0.766) = -50^{\circ}$

From the diagram, the second solution is $180^{\circ} + 50^{\circ} = 230^{\circ}$. $\theta = 230^{\circ}$, 310°

4 a
$$7 \sin \theta = 5, \ 0 \le \theta \le 2\pi$$

$$\sin\theta = \frac{5}{7}$$

$$\theta = 0.796$$
 and $\theta = \pi - 0.796 = 2.35$

b
$$2\cos\theta = -\sqrt{2}, \ 0 \le \theta \le 2\pi$$

$$\cos\theta = -\frac{\sqrt{2}}{2}$$

$$\theta = \frac{3\pi}{4}$$
 and $\theta = 2\pi - \frac{3\pi}{4} = \frac{5\pi}{4}$

$$\mathbf{c} \quad 3\cos\theta = -2, \ 0 \le \theta \le 2\pi$$

$$\cos\theta = -\frac{2}{3}$$

$$\theta = 2.30$$
 and $\theta = 2\pi - 2.30 = 3.98$

d
$$4\sin\theta = -3$$
, $0 \le \theta \le 2\pi$

$$\sin\theta = -\frac{3}{4}$$

$$\theta = (-0.848), \pi - (-0.848), 2\pi + (-0.848)$$

 $\theta = 3.99, 5.44$

Solution Bank

5 a
$$\tan \theta = \frac{1}{7}$$

 $\theta = 8.13^{\circ} \text{ or } 188^{\circ}$

$$\mathbf{b} \quad \tan \theta = \frac{15}{8}$$
$$\theta = 61.9^{\circ} \text{ or } 242^{\circ}$$

5 **c**
$$\tan \theta = -\frac{11}{3}$$

 $\theta = -74.7^{\circ}$
 $\theta = 105.3^{\circ} \text{ or } 285^{\circ}$

$$\mathbf{d} \quad \cos \theta = \frac{\sqrt{5}}{3}$$
$$\theta = 41.8^{\circ}, 318^{\circ}$$

6 **a**
$$\sqrt{3}\sin\theta = \cos\theta$$
, $0 \le \theta \le 2\pi$

$$\frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$$
$$\tan \theta = \frac{1}{\sqrt{3}}$$

$$\theta = \frac{\pi}{6}$$
 and $\theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$

b
$$\sin \theta + \cos \theta = 0$$
, $0 \le \theta \le 2\pi$

$$\sin\theta = -\cos\theta$$

$$\frac{\sin\theta}{\cos\theta} = -1$$

$$\tan \theta = -1$$

$$\theta = \frac{3\pi}{4}$$
 and $\theta = \pi + \frac{3\pi}{4} = \frac{7\pi}{4}$

c
$$3\sin\theta = 4\cos\theta$$
, $0 \le \theta \le 2\pi$

$$\frac{\sin\theta}{\cos\theta} = \frac{4}{3}$$

$$\tan\theta = \frac{4}{3}$$

$$\theta = 0.927$$
 and $\theta = \pi + 0.927 = 4.07$

Solution Bank

7 **a**
$$2\sin\theta - 3\cos\theta = 0$$

$$\tan \theta = \frac{3}{2}$$

$$\theta = 56.3^{\circ} \text{ or } 236^{\circ}$$

b
$$\sqrt{2} \sin \theta = 2 \cos \theta$$

 $\tan \theta = \frac{2}{\sqrt{2}} = \sqrt{2}$
 $\theta = 54.7^{\circ} \text{ or } 235^{\circ}$

$$c \quad \sqrt{5}\sin\theta + \sqrt{2}\cos\theta = 0$$

$$\sqrt{5}\tan\theta + \sqrt{2} = 0$$

$$\tan\theta = -\frac{\sqrt{2}}{\sqrt{5}}$$

$$\theta = -32.3^{\circ} \theta > 0$$

$$\theta = 148^{\circ} \text{ or } 328^{\circ}$$

8 a Calculator solution of

$$\sin x^{\circ} = -\frac{\sqrt{3}}{2} \text{ is } x = -60^{\circ}$$

As $\sin x^{\circ}$ is – ve, x is in the third and fourth quadrants.

Read off all solutions in the interval $-180^{\circ} \le x \le 540^{\circ}$.

$$x = -120^{\circ}, -60^{\circ}, 240^{\circ}, 300^{\circ}$$

$$x = -0.151$$
 and $x = -\pi + 0.151 = -2.99$

$$c \cos x^{\circ} = -0.809$$

Calculator solution is 144° (3 s.f.)

As $\cos x^{\circ}$ is – ve, x is in the second and third quadrants.

Read off all the solutions in the interval $-180^{\circ} \le x \le 180^{\circ}$.

$$x = -144^{\circ}, +144^{\circ}$$

Note: Here solutions are $\cos^{-1}(-0.809)$ and $(360^{\circ} - \cos^{-1}(-0.809))$.

Solution Bank

8 d
$$\cos x = 0.84, -2\pi \le x \le 0$$

$$x = -0.574$$
 and $x = -2\pi + 0.574 = -5.71$

e
$$\tan x = -\frac{\sqrt{3}}{3}, \ 0 \le x \le 4\pi$$

$$x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$
, $x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$,
 $x = 3\pi - \frac{\pi}{6} = \frac{17\pi}{6}$ and $x = 3\pi - \frac{\pi}{6} = \frac{23\pi}{6}$

8 f
$$\tan x^{\circ} = 2.90$$

Calculator solution is

$$\tan^{-1}(2.90) = 71.0^{\circ}(3 \text{ s.f.})$$

(not in interval).

As $\tan x^{\circ}$ is +ve, x is in the first and third quadrants.

Read off all solutions in the interval

$$80^{\circ} \le x \le 440^{\circ}$$
.

$$x = 251^{\circ}, 431^{\circ}$$

(Note: Here solutions are

$$\tan^{-1}(2.90)+180^{\circ}, \tan^{-1}(2.90)+360^{\circ}.$$

9 a It should be $\tan x = \frac{2}{3}$, not $\frac{3}{2}$.

b Squaring both sides creates extra solutions.

9 **c**
$$\tan x = \frac{2}{3}$$

 $x = 33.7^{\circ} \text{ or } x = -146.3^{\circ}$

10 a

b The graphs intersect at 2 points in the given range so there are 2 solutions.

Solution Bank

10 c
$$2 \sin x = \cos x$$

 $\frac{\sin x}{\cos x} = \frac{1}{2}$
 $\tan x = \frac{1}{2}$
 $x = 26.6^{\circ}$
 $x = 26.6^{\circ} + 180^{\circ} = 206.6^{\circ}$
 $x = 26.6^{\circ}$ or 206.6°

11
$$\tan \theta = \pm 3$$

When $\tan \theta = 3$, $\theta = 71.6^{\circ}$
or $\theta = 71.6^{\circ} + 180^{\circ} = 251.6^{\circ}$
When $\tan \theta = -3$, $\theta = -71.6^{\circ}$
or $\theta = -71.6^{\circ} + 180^{\circ} = 108.4^{\circ}$ or $\theta = 108.4^{\circ} + 180^{\circ} = 288.4^{\circ}$
 $\theta = 71.6^{\circ}$, 108.4° , 251.6° or 288.4°

12 a
$$4 \sin^2 x - 3 \cos^2 x = 2$$

 $4 \sin^2 x - 3(1 - \sin^2 x) = 2$
 $4 \sin^2 x - 3 + 3\sin^2 x = 2$
 $7 \sin^2 x = 5$

$$7\sin^2 x = 5$$
$$\sin^2 x = \frac{5}{7}$$
$$\sin x = \pm \sqrt{\frac{5}{7}}$$

12 b $4\sin 2x - 3\cos 2x = 2$, $0 \le x \le 2\pi$

$$x = 1.0$$
, $x = \pi - 1.01 = 2.1$,
 $x = \pi + 1.01 = 4.1$ and $x = 2\pi - 1.01 = 5.3$

13 a
$$2 \sin^2 x + 5 \cos^2 x = 1$$

 $2 \sin^2 x + 5(1 - \sin^2 x) = 1$
 $2 \sin^2 x + 5 - 5 \sin^2 x = 1$
 $3 \sin^2 x = 4$

b Using
$$3 \sin^2 x = 4$$

$$\sin^2 x = \frac{4}{3}$$

$$\sin x > 1$$
, therefore there are no solutions.